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A roll-pitch seeker has a wide field of view but suffers from a singularity as the sightline coincides with the outer gimbal (OG) axis.
In the vicinity of the singularity, the tracking effectiveness is often degraded or even lost due to the high actuation demand on OG,
which is known as the zenith pass problem. To solve this problem, this paper first proposes a novel motion model of sightline to
predict the singularity in a receding horizon, where the model parameters are identified using a modified recursive least square
estimator. And with the singularity predictions as set points, a predictive functional controller is then designed for the OG
position control to minimize the tracking error. This novel combination control scheme is validated in MATLAB/Simulink.
Simulation results have confirmed that the proposed scheme can significantly mitigate the zenith pass problem and be applied
to the real-time tracking process.

1. Introduction

Taking into account the cost savings and size reduction, a
two-axis gimbaled platform has been widely used in optics
seekers of precision-guided missiles. It can be intelligibly
used to track the target and to provide the inertial stabiliza-
tion for the sensor’s pointing vector. There are usually two
kinds of structural seeker: elevate-azimuth seeker and roll-
pitch seeker, classified by the rotation axis. Between them,
the roll-pitch seeker and the one this paper concerned can
be designed smarter and of a larger gimbal angle, which
attracted much more attention in the past two decades [1].

A sketch of the roll-pitch seeker is shown in Figure 1. In
this configuration, the target detector and inertial sensors are
mounted on the inner gimbal (IG), which is constrained to
rotate with the pitch axis. And the outer gimbal (OG) rotates
with the roll axis. Each gimbal is actuated by a brushless DC
motor and angle information is measured by an encoder, rep-
resented by γs, ϑs for OG and IG, respectively. With combi-
nations of γs, ϑs, the boresight of the seeker can point to
any orientation in space. In practical applications, however,
there is a fundamental limitation to this configuration. That

is, the occasional situation where the target passes directly
the zenith (defined as ϑs = 0 degree), the roll axis has to rotate
nearly 180 degrees instantly. It is hard to achieve such a large
(mathematically infinite) rate and acceleration demand for a
physical servo system. As a result, the roll-pitch seeker will be
unable to remain pointed at the target and the tracking error
is correspondingly magnified through the zenith pass event.
Even the target will be lost if the error is too large to exceed
the instantaneous field of view of the seeker, as shown in
Figure 2. That is the so-called problem of zenith pass for
the roll-pitch gimbal tracking system.

To avoid or mitigate this problem, several approaches
have been proposed in the past [2–5]. They can be roughly
summarized into three solutions, namely, three-axis design,
tilt outer gimbal axis design, and program guidance method.
Among them, this first solution and the one most straightfor-
ward is to add an extra axis to the stabilization and tracking
system. With the three-axis design, the zenith pass problem
can be completely overcome by altering the two rotation axes
of three in different tracking scenarios. However, this solu-
tion can not only increase the size and cost but also bring
some other complex issues like coupling of axes’ inertia.
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The second solution, the tilt outer gimbal design, can be sub-
divided into two: fixed tilt angle and adjustable tilt angle. The
fixed tilt angle design is just to orient the boresight of the
seeker so that the zenith singularity lies away from the work-
ing area of the system. It is certainly unsuitable as the area is
unknown and the seeker demands a field of hemispherical
coverage, while the adjustable tilt angle design can well han-
dle this trouble by switching angles in different scenarios, it
brings other issues like increasing size, cost, and complexity
as the three-axis design. Unlike the previous two solutions
to change the hardware structure, the third one, program
guidance method, is to tackle the problem by preplanning
the boresight trajectory within acceptable error range. In this
method, the OG angle response of zenith pass is finally opti-
mized under the actuator constraints, and the singularity is
significantly mitigated. However, this method is basically
only used in the design of satellite tracking antennas for the
geometry trajectory of sightline has to be known a priori in
the process. To achieve this application on the roll-pitch
seeker tracking system, the trajectory must be predicted opti-
mally online.

Inspired by the last solution, this paper proposed an
online receding prediction and optimization scheme for the
OG position control around the zenith. The scheme is mainly

implemented with two components, the zenith reference pre-
dictor and the predictive functional controller (PFC). The
predictor uses a low-order sightline motion model to predict
the zenith trajectory and to generate the tracking angle refer-
ence of OG in a short receding horizon, where the model
parameters are updated with the newest measurements using
the recursive least square method. While the PFC, a fast pro-
cessing control technique [6], uses a generalized model of
inner loop to predict the angle response over the same hori-
zon, combining this with the zenith reference, a quadratic
performance index optimum process can be constructed to
minimize the tracking error. Emphatically, the optimization
process is repeated with the newest reference for online
real-time control and the constraints of actuator can be taken
into account in optimizing the performance index. The
proposed PFC with the zenith reference predictor is validated
in MATLAB/Simulink. Simulation results have proved the
effectiveness of the proposed control strategy, by tracking
the zenith pass trajectory within a smaller error range than
linear PI.

The total paper is divided into five major sections starting
from first, introduction. Section II elaborates the strategy of
zenith reference generation. Section III gives a brief overview
of PFC scheme and employs it in the gimbal position
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Figure 1: Roll-pitch gimbaled seeker configuration.
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controller design. Section IV gives MATLAB simulation
results and some observations around zenith, and section
VI concludes the contribution of the paper.

2. Zenith Reference Predictor

2.1. Gimbal Motion Equations. Consider a two-axis, roll-
pitch gimbal system as depicted in Figure 1. In the figure,
the roll and pitch gimbals are indicated. The sensor is placed
on the pitch gimbal. It detects and evaluates the sightline
angle errors εy, εz , which are defined by the angles between
sightline and antenna boresight in pitch and yaw axis plane
[7]. The sightline angle errors are fed back to move the gim-
bals with desired angles, and they make the antenna track
the target.

To guarantee the track is error free, the precise motion
equations of the gimbal angels and rates are derived in this
part. The definitions of the coordinate systems used in deri-
vation of the angles are summarized in Table 1. In the table,
RxðγsÞ is the coordinate transform matrix representing the
rotation of angle γs about x-axis. The relations among the
coordinate systems are illustrated in Figures 1, 3, and 4.

It should be emphasized that the frame of LOS, defined in
the last row of the table, is introduced as an intermediate coor-
dinate system to calculate the desired gimbal angles γDS, ϑDS
from the current angles γs, ϑsand the sightline angle errors εy,
εz. Thismay seem redundant and conversely increase the com-
plexity of derivation. But, as will be shown in the next part, the
azimuth and elevation angles of the LOS frame are character-
istic parameters to predict the sightline trajectory and used to
generate the OG angle references around the zenith, such
that the less additional complexity could be ignored.

In most situations, the azimuth and elevation angles are
found by calculating the unit vector representing line of sight,
then using the information to recover the angles from the
rotation matrix [8]. Here, the sightline vector can be first cal-
culated with angles γs, ϑs, εy, εz , and since the orientation of
the vector coincides with that of XP and XLOS axes, the sight-
line angles q, λ in terms of γs, ϑs, εy, εz can be easily derived:

q = tan−1
cos εz cos εy sin ϑs sin γs

sin εz sin ϑs − cos εz cos εy cos ϑs

 

+
sin εz cos ϑs sin γs − cos εz sin εy cos γs

sin εz sin ϑs − cos εz cos εy cos ϑs

!
,

λ = sin−1 cos εz cos εy sin ϑs cos γs
�

+ sin εz cos ϑs cos γs + cos εz sin εy sin γs
�
:

ð1Þ

With a similar derivation, the transformation from q, λ to
γDS, ϑDS is given by

γDS = tan−1 −
sin q
tan λ

� �
,

ϑDS = cos−1 cos q cos λð Þ:
ð2Þ

Take the derivative of Equation (2), with respect to time,
we have

_γDS =
sin q

sin2λ + cos2λsin2q
_λ −

cos q tan λ

tan2λ + sin2q _q,

_ϑDS =
tan λ cos qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2λ + sin2q

p _λ + sin qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2λ + sin2q

p _q,
ð3Þ

where _γDS, _ϑDS are the desired gimbal rates for tracking. _q, _λ˙
are the azimuth and elevation rates of sightline, respectively.
When the sightline moves close to the zenith, i.e., q⟶ 0,
λ⟶ 0, Equation (3) can be simplified with small angle
approximation (sin q ≈ q, tan q ≈ q, cos q ≈ 1, the same for
λ), as shown

_γDS =
q _λ − λ _q

λ2 + q2
,

_ϑDS =
q _q + λ _λffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + q2

p :

ð4Þ

It can be easily found from Equation (4) that the limit
of _γDS tends to infinity as q⟶ 0, λ⟶ 0, which means
when the sightline approaches around the zenith, the outer
gimbal has to follow a very large rate demand. It is hard
to achieve for a physical servo system. So loss of target
is likely to happen in the circumstance, and this is the
called zenith pass problem.

2.2. Zenith Reference Generation. Predictive functional con-
trol requires a set-point trajectory that reflects estimates of

Table 1: Definitions of coordinate system.

Frame Definition

B
(i) Missile body frame (regarded stationary for simplicity)
(ii) XB: missile nose direction
(iii) YB: right direction, on the yaw plane

S

(i) Seeker antenna heading frame
(ii) XS: antenna boresight direction
(iii) ZS: coincides with pitch gimbal axis
(iv) TSB = RZ ϑSð ÞRX γSð Þ, γS, ϑS = seeker roll, pitch gimbal
angles

P
(i) Target pointing frame
(ii) XP : sightline direction
(iii) TPS = Rz εzð ÞRy εy

� �

DS

(i) Target pointing frame
(ii) XDS: sightline direction
(iii) ZDS: coincides with pitch gimbal angles
(iv) TDSB = RZ ϑDSð ÞRx γDSð Þ, ϑDS, γDS = desired roll, pitch
gimbal angles of seeker

LOS

(i) LOS frame
(ii) XLOS: sightline direction
(iii) ZLOS: coincides with the z-axis of body frame
(iv) TLOSB = Rz λð ÞRy qð Þ, q, λ = azimuth and elevation
angles of LOS based on missile body frame
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the demands for a period of time into the future (the predic-
tion horizon). For a tracking task, this is not generally possi-
ble, but the seeker tracking scenario is such that because the
crossing rate of sightline as seen from the missile is quite
low [9]. Thus, it can be assumed, the azimuth/elevation
sequence of sightline follows a stationary time series model
in a relatively short period of time. And it intends to adopt
a low-order stationary time series model to fit the motion
of sightline (here, three-order is selected for use). By identify-
ing the model parameters with past measurements, the
required future azimuth/elevation can be predicted through
extrapolating the motion model into the prediction horizon.

Assuming that the time series model about azimuth/-
elevation of sightline (based on frame B) could be written
as [10]

y kð Þ = ϕT k − 1ð Þθ, ð5Þ

with

ϕT k − 1ð Þ = y k − 1ð Þ, y k − 2ð Þ,⋯,y k − nð Þ½ �,
θ = a1, a2,⋯,an½ �T :

ð6Þ

where the azimuth/elevation is modeled by a linear combi-
nation of its past values. θ is the unknown combination
coefficients. ϕTðk − 1Þ represents the most recent n samples
of sightline, of which the value is usually unmeasurable but
calculated with the measurements of γs, ϑs, εy , εz through
Equation (1).

A recursive least-squares (RLS) estimator usually with
some modification is the standard recursive estimation tech-
nique for determining the parameters in such a system [11].
Here, for tracking the time-varying azimuths, we employ
two windowing techniques in RLS: one is the exponentially
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Figure 3: Sensor heading and target pointing frame.
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weighted window to emphasize recent data and the other is
the sliding window to discard old data [12]. In this way, the
most recent changes in the relative motion of the missile
and target are sufficiently taken into account, and the past
unfit motion is ignored. The corresponding cost function is
defined as follows:

E kð Þ = 〠
k

i=k−N+1
wk−i y ið Þ − ϕT i − 1ð Þbθ kð Þ

h i2
, ð7Þ

where bθðkÞ is the estimated vector of θ. N and w are a
window size and a weighting factor, respectively. Differen-

tiating EðkÞ with respect to bθðkÞ and setting the result to
zero renders

bθ kð Þ =Φ−1 kð ÞΨ kð Þ, ð8Þ

where

Φ kð Þ = 〠
k

i=k−N+1
wk−iϕ i − 1ð ÞϕT i − 1ð Þ,

Ψ kð Þ = 〠
k

i=k−N+1
wk−iy ið Þϕ i − 1ð Þ:

ð9Þ

For iterative calculation of Equation (8), Φðk + 1Þ is
expressed as

Φ k + 1ð Þ = 〠
k+1

i=k−N+2
wk+1−iϕ i − 1ð ÞϕT i − 1ð Þ =wΦ kð Þ

+ ϕ kð ÞϕT kð Þ −wNϕ k −Nð ÞϕT k −Nð Þ:

ð10Þ

Similarly,

Ψ k + 1ð Þ =wΨ kð Þ + y k + 1ð Þϕ kð Þ −wNy k −N + 1ð Þϕ k −Nð Þ,

ð11Þ

where ΨðkÞ can be replaced with ΦðkÞ · bθðkÞ.
Substituting Equations (10) and (11) into Equation (8),

the estimate bθðk + 1Þ is then recursively computed as

bθ k + 1ð Þ = bθ kð Þ +Φ−1 k + 1ð Þ
· ϕ kð Þe0 k + 1ð Þ −wNϕ k −Nð Þel k + 1ð Þ� �

,

ð12Þ

where

e0 k + 1ð Þ = y k + 1ð Þ − ϕT k + 1ð Þbθ kð Þ,
el k + 1ð Þ = y k −N + 1ð Þ − ϕT k −Nð Þbθ kð Þ:

ð13Þ

As for the calculation of Φ−1ðk + 1Þ, we define an inter-
mediate matrix:

M kð Þ =wΦ kð Þ + ϕ kð ÞϕT kð Þ: ð14Þ

Then,

Φ k + 1ð Þ =M kð Þ −wNϕ k −Nð ÞϕT k −Nð Þ: ð15Þ

Using the matrix inversion lemma, Equations (14) and
(15) become

M−1 kð Þ = 1
w

Φ−1 kð Þ − Φ−1 kð Þϕ kð ÞϕT kð ÞΦ−1 kð Þ
w + ϕT kð ÞΦ−1 kð Þϕ kð Þ

	 

,

Φ−1 k + 1ð Þ =M−1 kð Þ + M−1 kð Þϕ k −Nð ÞϕT k −Nð ÞM−1 kð Þ
w−N − ϕT k −Nð ÞM−1 kð Þϕ k −Nð Þ :

ð16Þ

By means of Equations (12) and (16), the estimated
combination parameters are recursively calculated. And the
rolling azimuth/elevation predictions over the short predic-
tion horizon are then obtained as

q̂ k + ið Þ = bϕT

q k + i − 1ð Þbθ kð Þ,

λ̂ k + ið Þ = bϕT

λ k + i − 1ð Þbθ kð Þ,

 i = 1, 2,⋯, P,

ð17Þ

where

bϕT

q k + i − 1ð Þ = q̂ k + i − 1ð Þ,⋯,q k + i −Nð Þ½ �,

ϕ̂
T
λ k + i − 1ð Þ = bλ k + i − 1ð Þ,⋯,λ k + i −Nð Þ

h i
:

ð18Þ

Substitute the predictions into Equation (2), the receding
OG angle reference at time instant k is finally generated.

3. PFC Position Controller

Most high-performance servo systems adopt a three-loop
control strategy: an inner current loop for an accurate torque,
a speed loop for platform stability, and a position loop for
angle tracking [13]. In view of this, we proposed a cascade
scheme for combining PFC with PID in the servomechanism
control. That is, the inner current loop and speed loop adopt
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in the classical PID control method to guarantee a good
interference rejection, while the position loop employs a
novel PFC controller to minimize the tracking error with
respect to the zenith reference. The minimization is specifi-
cally achieved through the controller to optimize the rate
demand for the speed loop. To illustrate this process, this sec-
tion first outlines the design procedures of PFC. And a math-
ematical model of the internal loop including actuator is then
derived as the generalized control plant for application. The
actuator constraint is also taken into account by transferring
to the generalized model in this process. Finally, completing
appropriate parameters, a sightline position controller is
designed on the proposed technique.

3.1. Principle of Predictive Functional Control. In contrast to
other predictive control techniques, PFC can significantly
reduce the online computation time, which makes it possible
to apply the method in real-time control of fast response sys-
tem. Within the scope of model predictive control (MPC), it
is mainly composed of the following parts [14]:

3.1.1. Base Function. The future controlled variable is
structured as a linear combination of several prior known
functions:

u k + ið Þ = 〠
nB

j=1
μ j f j ið Þ, i = 0, 1, 2,⋯, P − 1, ð19Þ

where nB is the number of base functions, P is the length
of prediction horizon, and μ j is the weight coefficient cor-
responding to the base function f j. The selection of base
functions is determined by the set-point trajectory and
the nature of the process. Generally, canonical functions
are used, e.g., step, ramp, or exponential function [15].
Depending on the selected base functions, the output
response of the object can be calculated offline a priori.
And only the weighting coefficients need to be found
online. For the gimbal servo control system, we will use
the polynomial type as

f j ið Þ = ij−1 j = 1, 2,⋯, nB, j = 1, 2,⋯, nB: ð20Þ

3.1.2. Prediction Model. A linear numerical model called
internal model is required for PFC to predict the future
outputs of plant. It can be expressed in state space as

Xm k + 1ð Þ = AmXm kð Þ + Bmu kð Þ,
ym kð Þ = CmXm kð Þ,

ð21Þ

where Am, Bm, and Cm are, respectively, coefficient vectors
or matrixes of the state equation. Xm is the state vector, u
is the input scalar, and ym is the model output.

Through recursion, the model predictive output at sam-
pling time ðk + iÞ is divided into two parts:

ym k + ið Þ = yuf k + ið Þ + yf k + ið Þ i = 1, 2,⋯, P, ð22Þ

with

yuf k + ið Þ = CmA
i
mXm kð Þ,

yf k + ið Þ = 〠
i−1

j=0
CmA

i−1−j
m Bmu k + jð Þ,

ð23Þ

where yuf is the free output (the past output) response to
u = 0 and yf is the forced output (the future output) response
to the control variable given by Equation (19). It can be
abbreviated as

yf k + ið Þ = μTg ið Þ, ð24Þ

where μ = ½μ1,⋯,μnB �
T , gðiÞ = ½g1ðiÞ,⋯gnBðiÞ�

T and gjðiÞ =
∑i−1

l=0CmA
i−1−l
m Bmf jðlÞ:

3.1.3. Error Compensation. Due to the model mismatch and
the impact of noises, there is always an error between the
model and the practical outputs. In PFC, the errors over the
prediction horizon are predicted and then counted as the
feedforward into the reference trajectory for compensation.
For a stable process, the future error can be expressed as

e k + ið Þ = e kð Þ = y kð Þ − ym kð Þ, ð25Þ

where ymðkÞ, yðkÞ are the model and practical outputs at the
sampling tim k, respectively. Hence, the practical output pre-
diction ypðk + iÞ can be expressed as

yp k + ið Þ = ym k + ið Þ + e k + ið Þ ð26Þ

3.1.4. Reference Trajectory. For preventing drastic changes
and overshoot, the reference trajectory is constructed to pro-
vide a smooth transition towards the future set points within
a certain prediction horizon. The new expected path defines
the behavior of the closed-loop system. In its construction,
an exponential function is often employed for some excellent
mathematical characteristics [6]. The reference trajectory is
given by

yr k + ið Þ = c k + 1ð Þ − αi c kð Þ − y kð Þ½ �, ð27Þ

where yr represents the reference trajectory, c is the set value,
and α = e−Ts/Tr is the attenuation coefficient, determined by
the sampling period Ts and the reference trajectory time con-
stant Tr .

3.1.5. Performance Index. A sum of the errors between the
predicted actual output and the reference trajectory is
selected as the performance index. It is defined as follows:

J kð Þ = 〠
S

i=1
yp k + hið Þ − yr k + hið Þ
h i2

, ð28Þ

where S represents the number of coincident points, hi is the
coincident point on the prediction horizon. In the absence of
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constraints, the minimization of JðkÞwith respect to the coef-
ficient leads to the optimal control sequence and only the first
term is effectively applied to control, that is,

u kð Þ = k0 c kð Þ − y kð Þ½ � + kmXm kð Þ +VTC kð Þ, ð29Þ

with

C kð Þ = c k + h1ð Þ − c kð Þ,⋯,c k + hsð Þ − c kð Þ½ �T : ð30Þ

Apparently, the control variable uðkÞ at the time instant k
is comprised of three parts, namely, the position tracking
error term, the model compensation term, and the future
planning term. All gains of the three terms, k0, km, V can be
calculated off-line as follows:

k0 =VT

1 − αh1

1 − αh2

⋮

1 − αh3

2666664

3777775,

km = −VT

CT
m Ah1

m − I
� �

CT
m Ah2

m − I
� �
⋮

CT
m Ahs

m − I
� �

2666666664

3777777775
,

V = RT

f1 0ð Þ
f2 0ð Þ
⋮

f nB 0ð Þ

2666664

3777775,

ð31Þ

where

R = 〠
S

j=1
g hj
� �

g hj
� �T" #−1

g1 ið Þg2 ið Þ⋯ gnB ið Þ
h i

ð32Þ

3.1.6. Constraints. Constrained optimization problems are
usually solved by quadratic programming, which is time con-
suming and unsuitable for online tracking processes. While
in PFC, the input constraints are directly taken into account
by passing the projections of the input produced by the reg-
ulator through appropriate limiters. That is,

u kð Þ =
max uf kð Þ, umax

� �
, uf kð Þ > 0,

min uf kð Þ, umin
� �

, uf kð Þ < 0,

(
ð33Þ

where uf ðkÞ is obtained through Equation (3) without con-
sidering constraints, umax, umin are the constraints imposed
on the input. By considering the future scenario for the cur-
rent sample point only and to repeat at each future sampling

point, this strategy turns out to be quite sufficient for most
applications.

3.2. Application to the Position Controller. Each gimbal is
driven by a brushless dc motor via a pulse-width modulation.
Beyond the elastic gears, the rigid-body gimbal dynamics can
be modeled in terms of the relevant angular position variable
θs in the following manner:

Jeq€θs + B _θs = Tm, ð34Þ

where Jeq, B are the moment of inertia of the gimbal about its
rotation axis and viscous friction coefficient, respectively. Tm
stands for the control force actuated by the torque motor,
which is modeled with armature resistance Ra, inductance
La, and back-electromotive ke through simple circuit equiva-
lence expressions as follows [13]:

Raia tð Þ + La
dia tð Þ
dt

= ua tð Þ − ke _θs,

Tm = ktia tð Þ,
ke = kt:

ð35Þ

Applying the model to the proposed control strategy, an
OG position controller block diagram is constructed, as
shown in Figure 5. In the figure, the PFC controller works
after the latest zenith reference, and behind the controller is
the internal loop, which is taken as a whole object GðsÞ for
PFC control. Neglecting the non-linear links, the transfer
function of G(s) is expressed by:

G sð Þ = Gω sð Þ · 1
s
,

Gω sð Þ = b0s
2 + b1s + b2

a0s4 + a1s3 + a2s2 + a3s + a4
,

ð36Þ

with

a0 = JeqLa,

a1 = Jeq Ra + Ki
P

� �
+ LaB,

a2 = Jeq Ra + Ki
P

� �
+ LaB,

a3 = Ki
IB + kt Ki

IK
ω
P + Kω

I K
i
P

� �
,

a4 = ktK
i
IK

ω
I ,

b0 = ktK
i
PK

ω
P ,

b1 = kt Ki
IK

ω
P + Kω

I K
i
P

� �
,

b2 = ktK
i
IK

ω
I ,

ð37Þ

where KP, KI are proportional constant and integral constant
of PI controller and superscripts i and ω denote the current
loop and speed loop, respectively. Their numerical values as
well as other model parameters of an actual system are sum-
marized in Table 2. GωðsÞ stands for the transfer function of
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speed loop. For such an asymptotically stable high-order
object, GωðsÞ can be equivalent to a second-order model
through fitting and simplifying. Thus, the generalized con-
trolled object is simplified to a three-order form GmðsÞ as

Gm sð Þ = 3:665 × 106
s3 + 1:58 × 104s2 + 3:569 × 106s ð38Þ

Discretizing Equation (38) at each sampling instant Ts,
the internal model for prediction ðAm, Bm, CmÞ is obtained.

Another procedure that must be specially designed is the
constraints imposed on the control input of the PFC control-
ler. The control input now is the desired motor speed. For its
constrained optimization, the physical actuator constraints
including speed and torque limits should be transferred to
the position controller. Specifically, the speed limit of the
actuator is directly imposed on the input through an appro-
priate limiter as mentioned before (the maximum of the
limiter here is selected as 8 rad/s for infrared image process-
ing limit), while the torque limit (i.e., the current limit) is
respected by converting into instantaneous speed limit with
the discretization of transfer function from i to ω, as shown:

_θm nð Þ = 1
Jeq

ktimaxTs − B _θs n − 1ð Þ
� �

+ _θs n − 1ð Þ, ð39Þ

where the current is assumed to reach the constraint over
the sampling time. _θs is the actual rate response, and _θm is
the instantaneous constraint, which is obviously variable

because of _θs. By calculating and preloading _θmon the
PFC controller at each sample point, it is ensured that the
speed demand provided to the internal loop is appropriate
and feasible to improve the regulation performance. And
the internal model derived above is also guaranteed valid
in this way.

The other parameters for implementing the PFC control-
ler are chosen after experiments as Tr = 1ms, nB = 2, P = 20,
S = 20. With these, the tracking law of OG around zenith is
deduced based on the principle discussed above.

4. Simulation and Results

Ji et al. [16] have analyzed the factors influencing the zenith
pass problem and concluded that the tracking performance
near the zenith is significantly affected by the approaching
degree and the angular rate of LOS. In view of this, a set of
straight close zenith passes at different degrees and rates are
selected to validate the proposed control strategy. The speci-
fied reference trajectories of qref ,λref is described as

qref = tan−1 tan σ

cos ωt − π/3ð Þ
� �

,

λref = sin−1 cos σ sin ωt − π/3ð Þð Þ,
ð40Þ

where for the sake of generality, the elevation and azimuth
references to be predicted are expressed in a form of a nonlin-
ear function. ω is the sightline angular rate. σ is the zenith
pass angle, of which the sine function determines the prox-
imity to the zenith. By performing MATLAB/Simulink simu-
lations of the trajectory tracking on the computer (Intel(R)
Core(TM) i5-4200H, 2.80GHz, RAM, 8.00GB), a compari-
son of the PFC controller with the standard linear PI in posi-
tion loop is shown from Figures 6–11.

Figures 6 and 7 show the OG angle and rate responses,
respectively, for an 1 deg zenith pass at 60 deg/s. The curve
shown by a broken line is the reference trajectory while the
solid line and the dot dash line indicate the tracking perfor-
mance of PFC and PI, respectively. It can be seen that as
t⟶ 1s, a drastic change occurs in the OG angle reference
trajectory. And the angular rate demand at this time tends to
be a large value, about 54 rad/s. For tracking this scenario, the

Controlled object G(s)

Position feedback

Current feedback

Current
PISpeed PI

±5A
+ + +

– –

–
1

LaS + Ra

1 1
JiS + Bi S

Rate feedback

kt

ke

yp

𝜔optyr PFC

Prediction
model
Gm (s)

y

Figure 5: OG position controller block diagram.

Table 2: Model parameters.

Model parameters Numerical values

Jeq, B 0:024 kg · m2, 0Ns/rad
La, Ra 0:6mH, 0:8Ω
kt , ke 0:26N/A, 0:26Ns/rad
Kω

P , Kω
I 0:4,0:1

Ki
P , Ki

I 8:4,400
Ts, Tω

s , Ti
s 0:02 s, 0:001 s, 0:0001 s
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preemptive control effect of the PFC control strategy is evi-
dent that the PFC controller returns to the accurate track in
a short setting time, while the linear PI exhibits a significant
hysteresis. Also evident is that the OG angle response error

of PFC occurs earlier than that of PI, which seems to indicate
PFC has a poor performance. But since the pass is much close
to the zenith at this point, the elevation of IG is quite so small
that the PFC response error will not lead to a large pointing
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Figure 6: OG angle response of PFC and PI (1 deg, 60 deg/s).
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Figure 7: OG angle response of PFC and PI (1 deg, 60 deg/s).
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deviation. The tracking effect is fully demonstrated in
Figures 8–11.

Figures 8–11 show a range of trajectories of tracking
errors at different zenith pass angles and rates. In each figure,
a 4° × 4° square is shown to simulate the field of view of the

seeker, and a simple table of lost time to quantify the tracking
performance improvement. It is evident that the receding
horizon control effectively minimizes the global tracking
error for all scenarios. Especially in Figures 9 and 10, the
PFC controller kept the target in the field of view of the seeker
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Figure 8: Tracking errors of PFC and PI (5 deg, 30 deg/s).

–4 –3 –2 –1 0 1 2 3 4
–3

–2

–1

0

1

2

3

4

5

Tr
ac

ki
ng

 er
ro

r a
ng

le
 𝜀 z

 (d
eg

)

Tracking error angle 𝜀y (deg)

PFC, lost time = 0s
P, lost time = 0.24s

Figure 9: Tracking errors of PFC and PI (1 deg, 30 deg/s).
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while the PI controller lost track for 0.24 s, 0.22 s, respec-
tively. Even though the target was impossible to track exactly
for both the methods in Figure 11, the PFC controller, com-
pared with PI, still minimized the range of tracking error and
provided an extra time of 0.18 s pointing to the target. These
indicate PFC a certain promotion of the tracking perfor-

mance. On the other hand, through comparison among the
figures, it can also be seen that the critical pass angle and rate
of the track loss is much laxer for PFC than PI: from tracking
of (5 deg, 30 deg/s) to losing of (1 deg, 30 deg/s), (5 deg,
60 deg/s) for PI and from tracking of (1 deg, 30 deg/s),
(5 deg, 60 deg/s) to losing of (1 deg, 60 deg/s) for PFC.
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Figure 10: Tracking errors of PFC and PI (5 deg, 60 deg/s).
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Figure 11: Tracking errors of PFC and PI (1 deg, 60 deg/s).
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As for the real-time problem of the algorithm, Table 3
summarized the single-step time spent in different prediction
horizons. It can be easily found that as the prediction horizon
expends, the computation time request becomes larger. This
is because the increase of predicted points and coincident
points makes the dimension of matrices lager and the calcu-
lation burden becomes heavier. However, the amount of cal-
culation is so small that even the prediction horizon extends
to P = 30, the computation time is just 1:76 × 10−3s, which is
far less than 0:02s, the control period of angle tracking.

5. Conclusions

The paper has developed a novel scheme of combining zenith
trajectory generation and predictive functional control to
deal with the zenith pass problem of the roll-pitch seeker.
The generation is achieved over a finite receding horizon
under a reasonable assumption, and the PFC controller is
implemented in the position loop to minimize the tracking
error. Simulation tests around zenith confirm that this
scheme is superior to the linear PI control method on all per-
formance indicators and can handle more tracking scenarios
of close zenith pass. These suggest the novel control scheme
is a practical design technique for zenith controller of the
roll-pitch seeker.
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